
Android Activity Book, Beta 1.0

Learning Android the fun way!

Corey Leigh Latislaw

i

Preface

Mobile devices have become an indispensable part of our lives in the short time
they have been around.

Perhaps the most exciting opportunities lie in the ability to make an impact
on not only the local, but global scale. There’s a host of emerging technology
spaces that simplify our lives, change the way we work, make education more
accessible, and save lives.

It’s an exciting time to become an Android developer! The demand for devel-
opers is high and the supply is low. Development tools are better and more
accessible to beginners. The desire for Android devices worldwide is increas-
ing at a fast pace.

This Book is Different
Lots of books start with the basics of Android, but don’t cover the skills you’ll
need to be an effective member of an Android team, such as source control,
testing, and scaling your designs.

They teach you every API under the sun, but they don’t show you how to write
a view that scales to the multitude of devices. They discuss the theory, but the
practice is left up to the reader to figure out for themselves.

I believe technical books should be accessible, give the whole picture, link to
the latest information available, and show you what you need to know to be
effective in your day to day.

ii

How to Use This Book

This book assumes Android knowledge that is covered in my “Android The-
ory Book.” This book is the activity-based companion that puts the theory to
practice. However, if you have some familiarity with Android, you will be fine
using this as a standalone book.

The exercises in this book build on each other. You should read the book
straight through from beginning to end. Each chapter depends on the work
from the last.

Note: The only exception to this rule is the Styling the Calculator
and Button Interaction chapters. If you prefer, you can choose to
make the buttons work before styling them or vice versa.

This book can be used as a kata. Katas are typically small programs that you
complete over and over again to improve your practice. They help break the
protectiveness we can develop over our own code and improve the speed that
we write applications.

Only through practice will you become comfortable. When you come back to
this book the second, third, fourth time your muscle memory will take over.
You will achieve programming flow while creating apps quickly with a high
level of confidence in their correctness.

Using the book this way will help you become comfortable with tooling inte-
gration, keyboard shortcuts, letting the IDE generate code for you, and Android
and testing concepts.

iii

http://http://en.wikipedia.org/wiki/Kata_(programming)

Conventions
I use several typesetting conventions in this book.1

Note: Used when calling out an important note or a caveat.

When interacting with the menu system to follow a set of instructions or
interacting with a particular user interface element you’ll see this formatting.

If you are directed to a particular file, the full file path will be
shown. If the full path has already been used in the same section, a shorthand
will be used, e.g. path.

When referencing ClassNames, functions(), XML attributes, or other
code items inline, a special font is used.

A box with syntax highlighting is used for longer code segments.

public class CalculatorActivity extends ActionBarActivity
{

@Override
protected void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_calculator);

}
}

Finally, key shortcuts are shown as: + + ctrl + + + + O 2

1When adding context or referencing sources, I use footnotes.
2This key combination is for demonstration purposes only, do not attempt at home.

iv

Introduction

We will build a calculator through a series of exercises.3 Each chapter is based
on a specific task such as creating the display or handling user interactions. It
represents a small iteration of app that adds of new functionality.

At the end of this book you will be comfortable with:

• Using Android Studio to build an application from start to finish.

• Using test-driven development from the beginning.

• Creating a fragments-based app architecture.

• Styling view elements.

• Scaling your design to many devices.

• Handling user interaction.

Although it’s suggested to have some familiarity with programming, the exer-
cises break down the steps and explain background information you may need.

Note: If you wanted to get familiar with basics of programming,
check out compilr, or codingbat.4

3Code samples for the book will be posted at github.
4I’ve started a separate book that lowers the programming barrier for entry. This book is expected

to release in late 2015.

v

https://compilr.com
http://codingbat.com/java

Test Driven Development
This book presents a guided path to learn test driven development (TDD) while
also learning Android development. We dive deeply into this topic in Chapter 3.

Tests lead our implementation. We start by writing a failing test and then code
to make the test pass. Once we have a passing test, then we are free to re-
structure the system (aka refactor). We continue this process until the feature
is finished.

Most books assume that integrating testing from the start is too overwhelming
for new readers. I think you’re smarter than that. I believe that giving you the
tools you need from the beginning of your journey will make it easier to go
further with this career path.

You are encouraged to follow the path laid out in the book even if you feel that
you won’t use it in future applications. You may find you like it!

vi

http://en.wikipedia.org/wiki/Test-driven_development

Contents

Preface ii

How to Use This Book iii

Introduction v

Contents vii

1 Hello, Calculator 1
1.1 Design . 2
1.2 Solution . 3

2 Hello, World 4
2.1 Project Wizard . 5
2.2 Choose Form Factors . 9
2.3 Select Activity Type . 11
2.4 File Options . 12
2.5 Run . 13
2.6 First Commit . 16

3 Hello, Robolectric 19
3.1 Create Test Module . 21
3.2 Integrate Robolectric . 27
3.3 Custom Test Runner . 29
3.4 First Test . 34

vii

3.5 Run Test . 41
3.6 Second Test . 46

4 Building the Display 57
4.1 Create Test File . 58
4.2 Start Test Fragment . 62
4.3 Display View . 65
4.4 Default Display . 73
4.5 Show Display . 75
4.6 Display Styling . 77

5 Building the Buttons 82
5.1 Set Up Tests . 83
5.2 Button Container . 86
5.3 Add Buttons . 88
5.4 Show Buttons . 94
5.5 Layout the Buttons . 96

6 Styling the Calculator 99
6.1 Button Styles . 100
6.2 Display Style . 107
6.3 Button State . 108
6.4 App Icon . 113

7 Button Interaction 116
7.1 Toast Test . 117
7.2 Add Click Listener . 119
7.3 Refactor Tests . 120
7.4 Refactor Fragment . 122
7.5 Finish Number Buttons . 124
7.6 Configure Operator Buttons 125
7.7 Equals Button . 128

8 Updating the Display 137

viii

8.1 Routing Calculator Events 138
8.2 Add Application & Test . 140
8.3 Setup Event Bus . 142
8.4 Number Events . 144
8.5 Post Number Event . 149
8.6 Update Number Display . 153
8.7 Update Operator Display . 162

9 Calculator State 192
9.1 Adding State . 193
9.2 Calculator State Fragment . 195
9.3 Calculator State Fragment Test 196
9.4 Add State to the Activity . 198
9.5 Migrate Activity State . 200
9.6 Refactor: Base Fragment . 202

10 Constructing Numbers 210
10.1 Handling Append Events . 210
10.2 Append the Display . 214
10.3 Set Display After Operator 218
10.4 Limit Digits . 226
10.5 Storing the Operand . 231
10.6 Reset the Operand . 239

11 Clearing the Calculator 257
11.1 Clearing the Display . 258
11.2 Clearing the Operand . 261
11.3 Clearing the Operator . 263

12 Handling Operators 277
12.1 Using Operator Types . 278
12.2 Handling Operator Events . 280
12.3 Adding Operator Types . 287

ix

12.4 Changing Operators . 290
12.5 Operator First . 291

13 Computing Results 293

14 Error States 294

15 Scaling the View 295
15.1 Flexible Dimensions . 295
15.2 Device Rotation . 297
15.3 Landscape . 297

16 Appendices 298
16.1 Glossary . 298
16.2 Shortcuts . 298
16.3 Resources . 298

17 Epilogue 299
17.1 About the Author . 300

x

Chapter 1

Hello, Calculator

In this book, we walk through creating a calculator. We use test driven devel-
opment to build out each feature slowly. We flesh out the design with colors
and interactions and ensure the design scales to many form factors.

1

1.1 Design
There are many valid ways to break down a design. Each choice has conse-
quences or benefits when we build out the application.

When breaking down a design, think about how you can segment it into stan-
dard view components, custom views, and fragments to best support the user
experience.

There are books other resources that you can consult, but your sense of how to
break down a design will evolve over time.

Exercise
How would you break down the view? What view elements would you use?

1. Either print the design on the previous page, sketch it on a whiteboard,
or draw on paper.

2. Draw boxes around the different view elements and/or add labels.

Think through at least two different ways to you could break down this view
into XML components.

2

http://developer.android.com/design/building-blocks/index.html

1.2 Solution
In this book, we’ll be using two Fragments laid out in a LinearLayout with
vertical orientation. We’ll cover this more in depth in Chapter 4 and Chapter 5.

The DisplayFragment will handle the display. We’ll use an EditText to
display the numbers entered into the calculator as well as calculations.

The ButtonsFragment will contain and control the calculator buttons. We’ll
use a RelativeLayout to position many Buttons for numbers, operators,
and clearing the display.

3

Chapter 2

Hello, World

We’ll use Android’s project templates to create our application. From the wel-
come screen, select Quick Start Start a new Android Studio project. . From inside
the application, use File New Project... .

4

2.1 Project Wizard
On the first wizard screen, fill out the following information:

• Application name: Calculator

• Company Domain: greenlifesoftware.com

The combination of the application name and the company domain generates
the Package name: com.greenlifesoftware.calculator (shown in gray).
You can edit this name with the blue Edit link.

5

Application Name
The application name you enter will be the name of the project on disk and the
title shown in the grid of app icons on your phone.

Behind the scenes, this sets the app_name string in app src main res
values strings.xml, which is configured as the application’s label

attribute in app src main AndroidManifest.xml.

Company Domain
The company domain you enter should be a domain to which you have rights.
For example, I own greenlifesoftware.com.

For future projects you plan to release, if you don’t have a domain, you can
buy one or create a github account. This gives you a unique username.github.io
domain. For more information about setting this up, read the documentation.

When it generates the packageName, the wizard reverses your domain name
and adds the application name to the end.

Package Name
Behind the scenes, both the packageName in the AndroidManifest.xml
and the applicationId in the app build.gradle file are set to the
same value.

Note: It’s possible to decouple them, but that’s not an option in the
wizard. We’ll leave them alone. The article ApplicationId versus
PackageName discusses the differences between them.

It’s preferable to choose the name you plan to ship with when you create the
project. It’s possible to change it later, but it’s not fun (especially on a team).

6

http://greenlifesoftware.com
http://github.com
https://help.github.com/articles/creating-pages-with-the-automatic-generator/
http://tools.android.com/tech-docs/new-build-system/applicationid-vs-packagename
http://tools.android.com/tech-docs/new-build-system/applicationid-vs-packagename

The package name serves three different purposes.

1. It’s a unique identifier used in the Google Play Store.

2. On a device only one application with the package name and key signa-
ture is allowed at the same time.

3. It determines where your code is stored.

You can not change an app’s package name after you ship it off to the store. If
you did change it, you’d need to create an entirely new application listing.

This means your current users would need to install a different application from
the market instead of getting a notification that an update is available.1 This is
not only a pain for your users, but could damage your brand and make discov-
erability difficult.

1For more information about shipping applications to the market, check out the Launch Checklist.

7

http://developer.android.com/distribute/tools/launch-checklist.html

Project Location
The Project location: is generated for you from the application name that you
enter and the default project location.

You can change the name inline or open the “Project location” dialog with the
... button to choose the new destination. Once you choose a new location it

becomes the default for new projects.

Default Mac location: Users [user] AndroidStudioProjects

Click OK when done.

8

2.2 Choose Form Factors
On the next wizard screen, we select which form factors (e.g. phone, tablet,
Glass, Wear, and TV) and API levels we plan to support.

Check the Phone and Tablet box and select API 14: Android 4.0 (IceCreamSandwich) 2

from the Minimum SDK drop-down. Click Next .

The minimum API level you choose populates the field minSdkVersion in
app build.gradle.

2This choice offers many options for functionality and supports a broad range of devices in the
market. 87.9% at the time of writing.

9

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
http://developer.android.com/about/versions/android-4.0-highlights.html

If you click on Help me choose. , you get this handy visualization of the distribu-
tion of Android OSes. You can find the latest distribution percentages on the
Android Dashboard.

Choosing an appropriate API for your project is a subject that requires several
inputs to choose the best one for your needs. The choice is influenced by your
target demographic, API-specific features, devices you plan to support, current
trends, and market share among other considerations.

Click OK to exit.

10

https://developer.android.com/about/dashboards/index.html

2.3 Select Activity Type
On this screen, we select the type of activity. This activity occupies the com-
plete display area of your device and serves as the entry point to the app.

Select Blank Activity and click Next .

Note: This is the simplest version that still creates an activity for
us. We will be using fragments, but we’ll add them manually.

As you can see, this screen offers many options for app types you can create in
the future.

11

http://developer.android.com/guide/components/activities.html

2.4 File Options
In the last screen we determined what type of files were created. In this screen,
we get specific about naming.

Change the default Activity Name: to CalculatorActivity.

The Title , Layout Name , and Menu Resource Name fields will automatically up-
date based on the name you enter. You can change them, if desired.

This creates an Activity called CalculatorActivity in the directory:
app src main java com greenlifesoftware calculator

Click Finish .

12

2.5 Run
We now have a working application.

To see it in action, click the play button at the top of the screen (next to the run
configuration for app).

This opens the “Choose Device” dialog.

13

Choose Your Device
Here you choose between running the app on an emulator or your own device
using the radio buttons.

The device list shows emulators you have running or connected devices through
USB. You can also launch an emulator that you’ve previously configured.

Select the checkbox next to Use same device for future launches to skip this dialog
in the future.

Click OK .

14

Launch Hello World
When the app launches, you see a simple application with welcoming text and
an action bar.

15

2.6 First Commit
Let’s clean up a few loose ends and commit our work.

Note: Had we used the Add No Activity option in the wizard, we
wouldn’t have the files we’ll remove in the following sections.

Remove the Action Bar
The ActionBar and menu were generated by the wizard, but doesn’t make
sense in a calculator app. We don’t have any options or view navigation so it’s
simply taking up valuable screen real estate.

Let’s remove it.

The action bar comes from our app’s theme, AppTheme, which is defined in
app src main res values styles.xml.

To remove the action bar, replace the current parent with
Theme.AppCompat.Light.NoActionBar.

<style name="AppTheme"
parent="Theme.AppCompat.Light.NoActionBar">

</style>

Note: AppTheme is specified as the theme attribute in the
<application> tag in app src main AndroidManifest.xml.

16

Remove Options
It’s bad practice to leave around code that you aren’t using. This is called dead
code or unreachable code. Technical debt adds up!

Since we’re not using the menu and we’ve removed the ActionBar, there’s no
way to reach the options.

To remove them, start in the activity.

app src main java com greenlifesoftware calculator
CalculatorActivity.java

In this file, the menu is inflated in onCreateOptionsMenu().

getMenuInflater().inflate(R.menu.menu_calculator, menu);

The inflate() call references the menu file.

app src main res menu menu_calculator.xml.

Delete the file and its enclosing directory.

When we removed the menu directory, we created two build errors in
CalculatorActivity.java. We don’t need either of these functions,

so just delete onCreateOptionsMenu() and onOptionsItemSelected().

17

http://en.wikipedia.org/wiki/Dead_code
http://en.wikipedia.org/wiki/Dead_code
http://en.wikipedia.org/wiki/Unreachable_code
http://en.wikipedia.org/wiki/Technical_debt

.gitignore

Finally, there’s a few generated files we won’t need in the repository.

If we did add them to the repository, each time that we built the application or
changed something in the IDE, our changeset would be affected.

Note: This book assumes git usage, but you are welcome to use
your favorite version control system (VCS).

Add these items to your .gitignore.

.gradle
/local.properties
/.idea/workspace.xml
/.idea/libraries
.DS_Store
/build
*.diff

Commit
Run the app. The action bar should be gone along with the options button.

Use the IDE integration or command line to prepare your commit.

18

Chapter 3

Hello, Robolectric

As I mentioned in the Introduction, unit testing and test-driven development
(TDD) is an important topic in Android development that is often left to the
reader. Instead, we will use it from the beginning so you’ll become familiar
with it as you build out the application.

We will not always follow a strict TDD flow through out this book. Tasks
like integrating libraries and creating helpers are sometimes shown before a
test necessitates them. This is a deliberate choice to improve the flow for the
reader.

In this chapter, we focus on configuration and tooling. In future chapters, we
write a test to verify that a UI element exists (before it does) and then add just
enough to make our tests pass.

Note: There’s a decent bit of configuration before we can start
testing. It may feel like overkill when you’re first starting out, but
I encourage you to bear with me through the exercises. The first
time will feel difficult, but it gets easier and it’s much simpler to
start a project with Robolectric from the start than to retrofit it later.

19

TDD
TDD helps you to closely focus on the application you are building piece by
piece. You write just enough code to pass a failing test. You can do broad
refactoring without worrying about breaking the rest of the system.

TDD is a cycle. You start with a failing test. You make the test pass. Then you
refactor, if desired.

At the end of many cycles required to create a feature, you will have a fully
tested and implemented feature. When your changes are significant enough
and the tests are passing, commit your work.

Robolectric
Unit testing has been particularly difficult in Android. One library that makes
this process much simpler is Robolectric.

Let’s get started.

20

http://www.robolectric.org

3.1 Create Test Module
There are plugins out there we could use to configure Robolectric with Android
Studio, but we’ll take the manual path. This tutorial expands the work of Paul
Blundell.1

Note: If you want to see a project in action, check out this reposi-
tory. I created two branches. The blundell branch walks through
his blog recommendations and implements them with notes along
the way. The other branch uses a plugin to configure Android Stu-
dio and Robolectric.

First, we’ll create a module using Android Studio’s tools. Select File New Module

to start the module wizard.

1Blundell, P. “Android Gradle App with Robolectric JUnit tests.” July 12, 2014. Retrieved from
web.

21

http://blog.blundell-apps.com/android-gradle-app-with-robolectric-junit-tests/
http://blog.blundell-apps.com/android-gradle-app-with-robolectric-junit-tests/
https://github.com/colabug/ASandRobolectric/
https://github.com/colabug/ASandRobolectric/
http://blog.blundell-apps.com/android-gradle-app-with-robolectric-junit-tests/

From this screen, select Java Library which is at the bottom (and possibly off the
screen and requires scrolling). Click Next .

22

Now we’ll configure the module properties.

Enter “robolectric_tests” as the Library Name .

Enter “Blah” in the Java class name section to create a placeholder test file (be-
cause you can’t skip this step). We’ll delete this file later.

I unchecked Create .gitignore file here, but this step is optional. You can maintain
a separate ignore file here if that works for you.

Click Finish .

23

Once you are done with the wizard, it will show the main project view.

Expand your new module robolectric_tests (it’s a top-level module
like app). In the module, you’ll see the Blah.java file that we created
with the wizard.

The wizard also created a file called build.gradle. In the project view,
you’ll see it under the robolectric_tests directory.2

If you looked at the file listings from the command line, you’d see this layout:

ls robolectric_tests
build.gradle
libs
src/test/java/com/example/Blah.java
robolectric_tests.iml

2If you are looking at the Android view, you’ll see it in the Gradle Scripts section.

24

Clean Up
We need to change a few things to make the module work seamlessly with the
Robolectric testing framework.

test Directory

The wizard put the Blah.java file in into the robolectric_tests
src main com example directory.

For testing purposes, we want test classes to live in the test directory under
src, so we’ll rename the main folder to test. The final path should

be: robolectric_tests src test com example.

Unfortunately you can’t easily see the full path in Android Studio, so you will
likely need to do this step in a file explorer or on the command line.

Delete Blah.java

Now we’ll delete both the file Blah.java and the directory example
that contains it.

However, we want to keep the directory structure below it intact. This will
allow us to easily create test files in the right places by using IDE shortcuts.

25

androidTest Directory

When we used the wizard to create this project, it created a test file: app
src androidTest java com greenlifesoftware calculator
ApplicationTest.java.

This file isn’t needed for this project and causes issues with the tests. When we
use shortcuts to create the tests, it will put it in the wrong folder while this one
exists.

Delete the directory androidTest and all files underneath it.

Commit
Now that we have the module configured, it’s time to save our work.

Let’s add a file called .gitkeep to the directory robolectric_tests
src test java com greenlifesoftware so that git will add this

path to the working tree even though the directory is empty.

To do this right click on com.greenlifesoftware , select New File and add a text
file named .gitkeep.

The build directory is generated in each module that uses Gradle during
the build process. To exclude this from your repository (because it’s noisy and
generated), add the line robolectric_tests/build/* to the top-level
.gitignore file.

Now we’re ready to commit.

26

3.2 Integrate Robolectric
The next step is to integrate the Robolectric toolchain into our project.

Add Dependencies
To add the dependencies, open the build.gradle file in the
robolectric_tests module.

Leave the top line alone and replace the dependencies with the latest version
of Robolectric (2.4 at the time of writing) and junit. We exclude the support
library from Robolectric because it causes build errors and is not needed for
testing.

apply plugin: 'java'

dependencies
{

testCompile 'junit:junit:4.+'
testCompile('org.robolectric:robolectric:2.4')
{

exclude module: 'support-v4'
}

}

27

Summary
This is a very important chapter because we will use unit testing throughout
this book to help us build out the UI. We:

• Integrated the industry-leading unit testing tool, Robolectric17, and wrote
two passing tests.

• Ensured the integration worked by running our sanity check on the activ-
ity.

• Created run configurations and learned a few ways to build the project.

• Ensured resources were configured for our welcome view.

• Created utilities for testing resources used in our UI.

17Robolectric is used in many Android coding teams. If they don’t use it now, you can become a
leader and advocate for higher quality code.

49

Chapter 10

Constructing Numbers

In this chapter, we add the logic for consecutive numbers appending to the
currently displayed number – up to the maximum digit length.

10.1 Handling Append Events
We’ll start by ensuring that a number event triggers an append event.

The current logic1 in CalculatorStateFragmentTest.java is to
catch a NumberEvent and reroute as a DisplayEvent. Instead we’d like to
send a more specific AppendEvent in its place.

First, rename the test to numberEventShouldFireAppendEvent().

@Test
public void numberEventShouldFireAppendEvent() throws Exception
{

String NUMBER_VALUE = "1";
bus.post(new NumberEvent(NUMBER_VALUE));

BaseEvent lastEvent = busHelper.getLastEvent();
assertTrue(lastEvent instanceof AppendEvent);
assertThat(((DisplayEvent) lastEvent).getValue(),

equalTo(NUMBER_VALUE));
}

1We migrated a test and logic for rerouting events from the activity to the fragment in the Migrate
Activity State section.

210

Promote NUMBER_VALUE to a constant field using + + C .

Next, create a helper function named postNumberEvent() to make the in-
tention of our code clear. To do this, highlight the bus posting line and use

+ + M to create a method.

private void postNumberEvent()
{

bus.post(new NumberEvent(NUMBER_VALUE));
}

After these refactors, the tests should still pass.

Finally, change DisplayEvents to AppendEvents in the test. s

@Test
public void numberEventShouldFireDisplayEvent() throws Exception
{

postNumberEvent();

BaseEvent event = busHelper.getLastEvent();
assertTrue(event instanceof AppendEvent);
assertThat(((AppendEvent) event).getValue(),

equalTo(NUMBER_VALUE));
}

private void postNumberEvent()
{

bus.post(new NumberEvent(NUMBER_VALUE));
}

This creates a build error, so use the shortcut + from the test to create
AppendEvent.java in the events package.

211

Append Display Event
This event will tell the display to append to the currently shown value.

First, extend DisplayEvent.

Once you’ve done that, the class complains that there is no constructor match-
ing super. This is because when we created DisplayEvent.java, we
only created one constructor that takes a value.

Use the key combination + to fix it.

Your class should look like this:

public class AppendEvent extends DisplayEvent
{

public AppendEvent(String value)
{

super(value);
}

}

Now run all tests in CalculatorStateFragmentTest.java. The
first assertion fails (that it’s an instance of AppendEvent) because we need to
update the rerouting logic.

212

Handle Append Events
In CalculatorStateFragment.java, our onNumberSelected()
subscription reroutes NumberEvents to DisplayEvents. Simply update the
subscription to post an AppendEvent instead.

@Subscribe
public void onNumberSelected(NumberEvent event)
{

CalculatorApplication.postToBus(new AppendEvent(event.getNumber()));
}

We will add logic starting in the Set Display After Operator section to deter-
mine when to append and when to replace the display text.

Rerun the tests. They should pass.

213

10.2 Append the Display

Add Test
In DisplayFragmentTest.java, add a test for updating the displayed
value named appendEventShouldAppendDisplay().

In the test, set the starting value for the display and post an AppendEvent to
the bus. Finally, assert that the text has been appended to the end.

@Test
public void appendEventShouldAppendDisplay() throws Exception
{

display.setText(TEST_VALUE);
bus.post(new AppendEvent(TEST_VALUE));
assertThat(display.getText().toString(),

equalTo(TEST_VALUE + TEST_VALUE));
}

Run the tests. They fail with this error:

java.lang.AssertionError:
Expected: "TestTest"

but: was "Test"

At this point, we’re not appending text, simply replacing. Let’s change that.

214

Append the Display
In DisplayFragment.java, add a subscription for AppendEvents.
In the function, get the currently displayed value, append the string from the
event and set the display.

@Subscribe
public void onAppendDisplay(AppendEvent event)
{

setDisplay(getDisplayString() + event.getValue());
}

Use the shortcut + to generate the getDisplayString() helper func-
tion. This returns the string that’s currently configured in the view.

public String getDisplayString()
{

return getDisplayView().getText().toString();
}

Use the shortcut + again to generate getDisplayView() that fetches
a reference to the EditText.

private EditText getDisplayView()
{

return (EditText) layout.findViewById(R.id.calculator_display);
}

Finally, use the getDisplayView() helper to simplify setDisplay().2

private void setDisplay(String displayString)
{

getDisplayView().setText(displayString);
}

2Typically this would done after the tests are in a passing state. It’s here for narrative flow.

215

17.1 About the Author
Corey Leigh Latislaw began her programming career with a different focus
than most. She is guided by a passion for traveling the world, bridging the
digital divide, advocating for environmental causes, and eating the best food
the world has to offer. She uses her skills for the greater good, to improve the
lives of others.

She began encouraging broader participation of women and minorities in STEM
careers while studying computer science at Florida State University. She was a
leader in both the ACM-W and STARS Alliance organizations. She continued
this work with Women in Cable Telecommunications of Philadelphia where she
served on the board and created events such as Tech Camp 2.0, a conference
that explored the future of cable technology.

She continues to pursue this passion and serves as VP of Operations on the
board of Kids on Computers, which opens computer labs in developing nations.
This June she worked in Huajuapan de León and plans to attend future trips
with the organization. She also leads local workshops through the Android
Alliance, GirlDevelopIt, and TechGirlz organizations.

She began her mobile career at Comcast Interactive Media. She helped build
the XfinityTV Android & iOS applications from the ground up. While there,
she founded the Philadelphia Android Alliance. This organization connected
Android developers and created many strong speakers from the region. It has
evolved into the Google Developer Group of Philadelphia and organizes many
meetups on various Google technologies.

She continued writing Android applications with local firms for a few years and
then set out on her own to run a training and consulting company. She’s pas-
sionate about the Android ecosystem and can’t wait to see where the platform
takes us in the coming years.

She has become a sought after international speaker that has traveled near and
far to teach Android as well as discuss programming, technology trends, secu-
rity, open source, and feminism.

300

	Preface
	How to Use This Book
	Introduction
	Contents
	Hello, Calculator
	Design
	Solution

	Hello, World
	Project Wizard
	Choose Form Factors
	Select Activity Type
	File Options
	Run
	First Commit

	Hello, Robolectric
	Create Test Module
	Integrate Robolectric
	Custom Test Runner
	First Test
	Run Test
	Second Test

	Building the Display
	Create Test File
	Start Test Fragment
	Display View
	Default Display
	Show Display
	Display Styling

	Building the Buttons
	Set Up Tests
	Button Container
	Add Buttons
	Show Buttons
	Layout the Buttons

	Styling the Calculator
	Button Styles
	Display Style
	Button State
	App Icon

	Button Interaction
	Toast Test
	Add Click Listener
	Refactor Tests
	Refactor Fragment
	Finish Number Buttons
	Configure Operator Buttons
	Equals Button

	Updating the Display
	Routing Calculator Events
	Add Application & Test
	Setup Event Bus
	Number Events
	Post Number Event
	Update Number Display
	Update Operator Display

	Calculator State
	Adding State
	Calculator State Fragment
	Calculator State Fragment Test
	Add State to the Activity
	Migrate Activity State
	Refactor: Base Fragment

	Constructing Numbers
	Handling Append Events
	Append the Display
	Set Display After Operator
	Limit Digits
	Storing the Operand
	Reset the Operand

	Clearing the Calculator
	Clearing the Display
	Clearing the Operand
	Clearing the Operator

	Handling Operators
	Using Operator Types
	Handling Operator Events
	Adding Operator Types
	Changing Operators
	Operator First

	Computing Results
	Error States
	Scaling the View
	Flexible Dimensions
	Device Rotation
	Landscape

	Appendices
	Glossary
	Shortcuts
	Resources

	Epilogue
	About the Author

