
Class 3 Handout

Girl Develop It, Class 3

res/
values/styles.xml

<style="NumberKey" parent="Wrap">
 <item="android:textColor">@color/white</item>
</style>
Group of reusable widget concepts that can be applied to multiple XML views.
They are useful for simplifying XML layouts because it reduces duplication and places that you need to
update when things change.
Can inherit from other styles (using parent="")
Themes are a special styles that are applied to the entire application. This is good for things like setting
the application's background color, whether to show a title bar or not, etc.

values/dimens.xml
Dimensions are used to describe width and heights of views. They can also be used to specify text sizes
or margins.
It's good practice to define dimensions in values/dimens.xml instead of hard coded on your XML widgets.
This allows you to change them quickly and define different sizes for different screens.
Sizes

match_parent (deprecated: fill_parent) - this view should fill the entire screen.
wrap_content - make this view no bigger than it needs to be to contain this element.
You can also define custom sizes in dp's (density independent pixels).

<dimen name="NumberButtonHeight">30dp</dimen>
Font sizes are specified in sp (not dp), which gives the benefits of dp, but text size also changes when
the user changes their text viewing settings.

Example: Extra large font sizes may be turned on for the visually impaired and you would want your app to use large fonts also.
values/strings.xml

You put strings like error messages, labels, and other static messages into the strings.xml file.
This makes it easy to internationalize, reuse, and update if they are centralized in one place.
Can use <i> and <u> to style them

<string name="BOLD_STRING">Hello there</string>
Can also use a format string

<string name="BROKEN_THINGS">%d of your things are broken.</string>
values/colors.xml

You can define your own colors in values/colors.xml.
There are several ways to specify them, but the simplest is #RRGGBB.

<color name="red">#FF0000</color>
IntelliJ has a GUI color picker.

drawable/
This is where you store images that will be used in the application. You can use JPG and PNG, but PNG
is preferred.

Note: File names must be all lower case, alpha-numeric, or with underscores.
Can define shapes in XML or use special 9-patch files that stretch as specified.
Can also describe states of an image or button. The states can refer to images, colors, or XML shapes.

<selector>
 <!--Pressed-->
 <item android:state_pressed="true" android:drawable="@color/selected_brown"/>

 <!--Focused-->
 <item android:state_focused="true" android:drawable="@color/focused_yellow"/>

 <!--Normal-->
 <item android:drawable="@color/brown"/>
</selector>

Making interfaces that scale http://developer.android.com/guide/practices/screens_support.html
Best Practices

Use wrap_content, match_parent, or dp units when specifying dimensions.
Don't use exact pixel sizes when defining a view because it won't scale or look good on other devices.
Create drawables for different densities so the images don't look bad when scaling

xhdpi, ldpi, mdpi, hdpi

Girl Develop It, Class 3

Making interfaces that scale http://developer.android.com/guide/practices/screens_support.html
Best Practices

Don't use exact pixel sizes when defining a view because it won't scale or look good on other devices.
Create drawables for different densities so the images don't look bad when scaling

xhdpi, ldpi, mdpi, hdpi
Create styles and use dimensions to scale your views. Sometimes you don't need a whole new layout to
make your app look good on larger screens. For example, with the calculator app, we just want the buttons
to look bigger. You can create a style that uses a dimension. Then using the qualifier system (described
below), you can specify how big the dimension is on the two different screens.

Using Android's qualifier system.
Qualifiers are used on folder names to specify if it relates to a specific screen size, orientation, or SDK
version.

layout-small, layout-medium, layout-large, layout-xlarge for different screen sizes
layout-land for landscape version of your view

Android magically shows the correct view for you if you put it in the right folder.
Responsive: You can create buckets for custom screen widths or heights. For example, if your current
layout looks great up to a 300dp screen width you create a layout for the smaller screen and then another
one for the larger size. Android knows which to sjow.

